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1. Introduction 

Estimating the size of a population of 
humans, animals, or events reldting to a commu- 
nity of such units is a major methodological pro- 
blem shared by researchers in many disciplines. 
Where counts of-organisms are involved, we may be 
concerned with such quantities as the total num- 
ber of residents, victims of a congenital anomaly, 
criminals or victims of crimes, drug abusers,par- 
ties involved in automotive accidents, or of fish 
in a lake, deer in a forest, or bacteria on a 
microscope slide. Populations of events frequently 
studied are those of births, deaths, migrations, 
marriages, separations, divorces, and diagnoses of 
cancer or other diseases within a chosen time 
interval. Frequently, the ultimate aim is not 
only estimation of magnitude, as shown by a total, 
but rather of change over time as shown by a rate 
of population growth or the incidence rate of an 
event such as disease attack. 

In principle, most data required to achieve 
reasonable aims for the study of human popula- 
tions can be supplied by census (which covers the 
whole population) and civil registration systems 
(continuous recording of events of interest), sup- 
plemented by periodic sample surveys during inter - 
censal periods. However, these traditional sta- 

tistical systems are not adequate in many coun- 
tries of the world and, for obvious reasons, are 
unsuitable for use with animal populations. Inad- 
equacies of the traditional sources have led to 

the development of statistical procedures design- 
ed to combine the information available from mul- 
tiple sources or protocols for detecting the 
same individuals or events, when each protocol is 

known to be insufficiently sensitive if used by 
itself. For human populations these procedures, 

generally grouped under the term Multiple- Record 
Systems (MRS), attempt to estimate the number of, 

persons or events while adjusting for the indivi- 

dual fallibilities of census, survey or vital 
registration systems. Analogous "Capture -Mark- 

Recapture" (CMR) techniques attempt to compensate 

for the virtual impossibility of locating and dis- 
tinguishing, in a short time, even the majority 
of members of any interesting animal population. 
In practice, CMR is distinguished by the use of 
i) detection protocols which are not coterminous 
in time, and ii) labeling and subsequent identi- 
fication procedures which are unavailable for 

human studies. 

The Multiple- Record System (MRS) involves 
data collection from two or more sources of infor- 
mation (called recording systems) which cover the 

same sample or sub -sample of areas and the same 

time period. The special case of two sources 

(Dual- Record System (DRS)) has been used widely 

in the last 30 years to adjust for omissions in 

the recording of vital events and to estimate 

population growth rates. In this regard, Chan - 
drasekar and Deming (1949) present a theoretical 
framework for estimating the total number of 
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events under the following Assumptions (1) -(3). 

1. No coverage errors with respect to the 
scope of area and /or time period in which 
individuals or events are recorded (i.e., 

each system only records individuals or 
events that pertain to the target area 
and /or time period under study); 

2. Independence of recording systems (i.e., 

the probability that both systems detect 
a randomly chosen individual or event is 

the product of the probabilities of 
detecting a randomly chosen element for 
each system individually); 

3. No misclassification errors with respect 
to determining exactly which systems have 
detected an individual or event (i.e., a 

perfect matching rule exists for linking 
information from the two systems to deter- 
mine correctly the number of individuals 
or events detected by both). 

Chakraborty (1963) and Das Gupta (1964) extend 
this approach to situations involving three or more 
sources of information. 

A fruitful approach to the study of MRS and 
CMR data is to view the involved set of detection 

protocols (recording systems for MRS, capture or 

observation methods or times for CMR) as a proba- 

bilistic process, or channel, with an input and 

resulting output. Input to the processor is a 

single element of the population to be studied, 
while the resulting output is a response pattern 

which delineates exactly which of the various 

detection protocols (if any) have recorded, or 

captured, that element. The aggregate result of 

passing every population element through the pro- 

cessor may be arranged, for d detection proto- 

cols, in a 2d contingency table with each dimen- 

sion, or marginal, describing the success or fail- 

ure of a single protocol in capturing the elements 

of the target population. In a typical MRS or CMR 

application, we see this contingency table absent 

the single cell containing those elements missed 

by all detection protocols. It is this "incoomplete 

contingency table" which must be used to generate 

estimates of population size. Sometimes -the popu- 

lation under study may be partitioned into a set 

of subpopulations according to such demographic 
variables as geographic location, urbanization, or 

sex, so that we see such an incomplete table with 

its missing cell for each subpopulation. 

Fienberg (1972), Bishop, Fienberg and Holland 

(1975), El- Khorazaty (1975) and Koch, El- Khorazaty 

and Lewis (1977) advocate fitting log- linear models 

to the observed cells of the above tables, and 

using these models to obtain refined estimates of 

the missing cell(s) and, hence, of the population 

total. Such refined estimates may be obtained by 

i) controlling for statistical dependence 

of specific types among the actions of 

the various detection protocols; 
ii) accounting for or modeling the effects of 

subpopulations or their defining factors 



on the probabilistic properties of the 
detection protocols. 

This generalization of the Chandrasekar- Deming 
approach for the DRS and the Peterson -Lincoln 
approach for the CMR allows great latitude in 

choosing an estimation procedure realistically 
adapted to the properties of actual recording systems. 

In this paper we give a matrix formulation 
of the general log- linear model applicable to data 
obtained from the operation of a multiple- record 
system on a stratified population. The matrix 
formulation yields explicit matrix product expres- 
sions for the true and estimated asymptotic cova- 
riance matrices of efficient estimators for the 
log- linear model parameter vector, as well as cor- 
responding results for the asymptotic covariances 
of fitted detection probabilities in the several 
strata, and of the stratum -specific inflation fac- 
tors used to estimate the stratum sizes. 

2. Matrix Formulation of the Log - Linear Model 
2.1. Notation 

Let i= 1,2,...,s index a set of sub- popula- 
tions (or strata). Let g = 1,2,...,d index a set 
of recording systems, and jg 1,2 represent the 
presence (jg 1) or absence (jo 2) of the 
attribute corresponding to registration by the 
g -th recording system. Let the vector subscript 
'= 

(j1,j2,..,id) index the multivariate 
response profiles for simultaneous recording sta- 
tus with respect to the d recording systems. 
Let n. denote the number of elements 

from the i -th sub -population with recording sta- 
tus (J1,j2,...,jd). Let 

p. =n. /n. (2.1.1) 
1 ;31j2...jd 

where ni is the total number of elements of sub - 
population i (i = 1,2,...,$) recorded by any of 
the record systems. Let 

(2.1.2) 
i;j1j2.. 

1 -ßi;22...2 
where Tr. is the probability that a 

population element has recording status j for 

sub -population i. Thus, denotes 

the conditional probability that, a popud ele- 

ment has recording status for sub- population 
i, given that it is observed. 

2.2. General Procedure for Estimating 
Population Size 

(a) Formulate a rank t s(2d -2) log- linear 
model for the Tr. 

(b) Estimate the parameters of the model 
from the unrestricted maximum likelihood 
estimators p. . 

4d of Tr. .2 7d 
provided by the observed incomplete con- 
tingency table; 

(c) Obtain estimates of 

from the lfitted model; 

(d) Estimate Ni, the size of stratum i, 

ni 

by 
1 i22...2 
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When = 1, d= 2 and the model chosen in 
(a) contains only main effects corresponding to 
the two record systems (which are thus assumed to 
operate independently in the sense of no associ- 
ation of detection by the two systems), the above 
procedure yields the classical Chandrasekar- 
Deming estimate. When s= 1 and d> 2, the 
choice of a model with no interaction terms, but 
with main effects corresponding to each system, 
yields the extension of their estimator derived 
by Chakraborty (1963). 

2.3. Representation of the Model 

For any specific stratum i, a general log - 

linear model for the corresponding Tr. 

may be written as 

(2.3.1) 

where Tr. is the vector of the ^1 1; 
arranged in lexicographic order, Xi is a known 
"design matrix" specifying the structure of the 
log -linear model, is the (unknown) vector of 
t (r -2) model parameters, lk is a k- vector of 
units, is the elementwise exponential opera- 
tor, and r= 2d. Xi is assumed to be of full 

rank, with columns jointly linearly independent 
of the vector lr representing the underlying 
linear restriction that Tri =1 

' 

Fienberg 

(1972) and Bishop, Fienberg and Holland (1975) 

further restrict to the class of hierarchical 
analysis of variance models, due to the ease of 

obtaining the maximum likelihood estimate of 
ß, under the conditional multinomial likelihood 
for the nib, through the computational techni- 

que of "iterative proportional fitting ". These 
models correspond to design matrices Xi for 

which the set of columns of Xi, can be 

written as 

[X.]c [X. ]c 

for some K , 

k =1 

where each Xik is the usual design matrix cor- 
responding to a complete (or saturated) factorial 

model involving as factors some subset of the d 

record systems. Results of this section apply to 

general Xi; we adopt the conditional multino- 

mial likelihood, but address directly the problem 

of obtaining estimates only in Section 4. 

For s > 1, we may generalize the above for- 

mulation to a model for Tr' = ... as 

= = X . (2.3.2) 

Here the vector of unknown model parameters 

is of dimension t s(r -2) , and underlies the 

joint detection probabilities for all strata 
through the composite design matrix 

= 

rsxt 

For general z, Dv is the diagonal matrix with 

on the principal ''-diagonal, and 

= [Irr 
with lvw, I v and ® representing a v x w matrix 

of units, the v x v identity and Kronecker multi- 

plication respectively. Each of the Xi is 

assumed of full rank, with columns jointly 
linearly independent of Otherwise the Xi 

may be of essentially free form and vary consider- 

ably from stratum to stratum. In particular, some 



columns of Xi may be Q, indicating that certain 
parameters of apply only to certain strata. 
Clearly, a model with small t is desirable if 
realistic. 

3. Determination of Covariance Structure 

As noted previously, we assume for the gen. 
erated tell counts a multinomial.distribution con - 
ditional on the totals ni of-elements detected 
in stratum i by any of the record systems.- Thus, 
the joint likelihood may be written as 

n.! 
1x(2,2,...,2) 

with the s constraints that 

tions for these estimators. In this regard, the 
compound function notation used in Forthofer and 
Koch (1973) is used to-express and the 
in.the form 

as G g ] where AI 

A3 -1 , 

and is the elementwise logarithmic operator. 

(3.1) As a result, --a consistent estimator for the cor-- 
responding asymptotic covariance matrix. can be 
determined as the matrix product 

(3 -6) 
2 

where 
The approach ultimately-leads as described 

in Section 2.2, to the estimators - 

and 
úi;22...2 

= 1 for all -i 
jä(2,2,...,2). 

Incorporating the log -linear model-to-this liken 
--.hood and expressing the result in- matrix terms 
yields - 

s - - n. 

1 

(3 -2) 
where 
nip is the vector of observed cell counts from 
the i -th stratum incomplete table (lexicographic- 

order), is the matrix consisting of the - 

first (r -1) rows of .Ai, and 

The asymptotic covariance matrix of any asymp- 
totically efficient (such as maximum likelihood or 
minimum Neyman chi -square) estimate. of ß is 

available as the negative inverse of fisher's 
Information Matrix._ Using matrix differentiation 
methods similar to those of Forthofer and Koch 
(1973), we obtain 

[log (r 
(3, 3) 

where n: (ni,n2, ,ns) defined 
analogously to the Hence, the 
asymptotic covariance of is obtained as 

2 

Clog 

(3.4) 

following simplifications. Since = (k) is 

consistent for a consistent estimator 
for the covariance matrix 

s 

= (70) 

1 

Thl asymptotic covariance matrix for the est- 
mator of the vector of conditional probabi- 
lities of the response profiles for the 
strata,-and the estimators yi(t) of the stra- 
tum-specific ratios 

ßi;22.:.2 

ßi22 

2 [1' 
.i;22...2 

(r l) 
is obtained by use of the well -known 8-method as 

based on the first -order Taylor series approxima- 

(3.5) 
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=n.(1+9.) 
for the missing cell and total size of stratum 
and 

jai 

for the population size. Since the ni are ran- 
dom variables assumed to have independent binomial 
distributions with parameters Ni and 

(1-11,;22.,.2), the methods indicated in Darroch 
(195 an- Fienberg (1972) can be used in con- 
junction with the above results to produce -esti- 
mators for the asymptotic variances of the - 

.2, Ai and N. In particular, these. - - 

quantiiies reduce to - 

Vúí,22...2 

+ (3.7) 

(úi;22.,.2i 
-(3.8) 

1 1 /ni} (3.9)- 

i=1í 
.where V, and- V^ are estimates for the 

variance of :i and covariance of and 

from (3.6). 
For the case sal, the estimators for the 

asymptotic variances of 14.22,,.2 and Ni are 

essentially the same as those given by Fienberg 

(1972) but avoid iterative computations required 
in general by his approach even after estimation 

of úi;22...2 and Ñ. 

4. Strategies for Fitting Log- Linear Models 

In this section, we describe three strate- 

gies available for estimating parameters and fit- 

ted joint detection probabilities for the models 

of Section 2. Associated statistics for evalua- 

ting adequacy of fit are also referenced. 

The most general method involves a slight 

modification of the approach of Grizzle and 

Williams (1972) for fitting log -linear models to 

complete contingency tables, which they developed 

as an application of the general methodology 



described by Grizzle, Starmer and Koch (1969). 
Weighted least- squares (WLS) computational algori- 
thms are applied to fit the postulated log- linear 
model to the observed vector 2, where 
contains the various 

2 , 

the unre- 

stricted maximum likelihood estimate of 
. The covariance matrix used is 

obtained by substituting the for 

, in the asymptotic covariance matrix 1,jlj2...3d 

of p, determined by applying the 6-method 
for deriving the covariances of transformed ran- 
dom variables (see Grizzle, Starmer and Koch 
(1969)). Thus, is expanded in a Taylor 
series about and the covariance matrix 
of the linear term extracted. This method yields 
a direct estimate of without iteration; 
the fitted joint detection probabilities are ob- 
tained by substituting into the model equa- 
tions. The estimator is a member of the class 
of procedures based on minimizing Neyman's (1949) 
modified chi -square criterion subject to a lin- 
earized hypothesis. As such, it is a Best Asymp- 
totically Normal (BAN) estimate of ß. For mod- 
erate to large samples in practice, tends to 
be close to the estimate which maximizes the 
conditional likelihood based on the in the 
sense that individual components of and 
tend to differ by less than the estimated stan- 
dard deviation of either. The usual weighted 
least -squares algorithms produce test statistics, 
both for fit of the model and additional linear 
parametric restrictions, which belong to the class 
of test criteria defined by Wald (1943). Thus, in 
terms of asymptotic distribution and power, they 
are equivalent to the corresponding likelihood 
ratio tests based on the conditional likelihood. 
All computations for this approach may be executed 
using a general computer program for the analysis 
of categorical data, GENCAT (Landis, Stanish, 
Freeman and Koch (1976)), available from the 
University of Michigan. 

When the postulated model is hierarchical, in 
terms of the entire set of dimensions involving 
both the different recording systems and the stra- 
tification variables, then the maximum likelihood 
estimators and likelihood ratio tests (based on 
the conditional likelihood) may be easily obtained. 
In this situation 

[X *] = U 
m 

.where X is the design matrix of a factorial 
model involving a subset of the dimensions deter- 
mined by the recording systems and /or stratifica- 
tion variables. If M is minimal, the observed 
marginal tables generating the Xtm), m= 1,2,...,M, 

form a set of minimal sufficient statistics for 
the parameters of the model X* (Birch (1963), 
Bishop, Fienberg and Holland (1975)). The suffi- 
cient statistics not only generate the fitted 
table which maximizes the underlying likelihood, 
but in fact are reproduced by it, as the maximum 
likelihood estimates of joint detection probabili- 
ties are the unique set of probabilities which 
both satisfy the model structure and generate 
marginal expected counts identical to the set of 
minimal sufficient statistics (Birch (1963)). 
This result is expressed in more general terms by 
expression (3.3). 
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For some models, the fitted joint detection 
probabilities may be calculated explicitly and 
directly from the sufficient marginal tables. 
Generally, however, it is necessary to use a modi- 
fication of the technique of "iterative propor- 
tional fitting" (IPF, or "raking") of Deming and 
Stephan (1940), which converges correctly in all 
cases. If C(m) is the observed marginal table 
generated by X(m), the technique is executed as 
follows: 

i) form Table T, of the same dimensions as 

the observed incomplete table, with 
zeros in cells representing unobserved 
elements and units in all other cells. 

ii) collapse T to form the marginal array 

generated by X1) from T; form 

by inflating each cell of T by 

the ratio of its marginal category fre- 

quency in C 
(1) 

to that in 

iii) for m= 2,...,M form C 
m) 

from i 
(m -1) 

using form T(m) from 
T(m -1) 

using C(m). 

iv) for v 2, cycle through ii) to iii) 

substituting for T, Cm for 

Cm, and Tm for continue 

until and are suffi- 

ciently close. 

The elements of Tm are then divided by the 

appropriate stratum sizes ni to yield the joint 
detection probabilities for each stratum. The 

estimated parameter vector B is obtained by sub- 
stituting these into the model equations and sol- 

ving, if desired. Estimated population size for 

each stratum, and likelihood ratio tests of fit 
associated with the model, or with comparisons of 

alternate models, may be calculated using the fit- 
ted probabilities without ever explicitly obtain- 
ing the model parameters. 

The estimates obtained by IPF may be prefer- 
able to those given by the WLS procedure when some 
observed stratum counts are modest, inasmuch as 

the asymptotic theory for the maximum likelihood 
estimators depends on the expected counts in cells 

of the marginal tables C(m), m= 1,2,...,M, where 
as that underlying the WLS approach depends on 

expected counts in individual cells of the incom- 
plete table. All computations for the IPF -MLE 

analysis may be executed using a computer program 

for fitting log- linear models to contingency 
tables, ECTA, available from the University of 
Chicago. 

When modest observed counts make the use of 

WLS unattractive and the proposed model is not 
hierarchical, estimates may often be derived by 
applying a Functional Asymptotic Regression Metho- 
dology (FARM) approach. This capitalizes on the 

observation that non hierarchical models can be 

written as hierarchical models with linear restric- 
tions on the parameters. Thus, we attempt to find 

an unsaturated hierarchical model from which the 



non hierarchical model of interest may be derived 
through the imposition of linear restrictions. 
IPF is applied to derive an initial -estimate of 

whose sampling variability derives from the 
expected counts corresponding to margins of the 
Observed data table rather than interior cells. 
WLS algorithms are then applied to this prelimi- 
nary estimate of using its estimated asymp- 
totic covariance matrix under the hierarchical 
model (as determined by the (5-method), to intro- 
duce the linear restrictions which reduce the 
hierarchical model to the more parsimonious non 
hierarchical model of interest. The appropriate 
likelihood ratio test is used to assess fit of the 
initial hierarachical model, and a conditional WLS 
test used to evaluate adequacy of the subsequent 
reduction. Further reductions of the non hierar- 
chical model may be evaluated by the application 
of WLS to the fitted parameters. 

The FARM procedure is somewhat simpler to 
implement computationally than to describe concep- 
tually. Once an initial hierarchical model is 

chosen, fitted joint detection probabilities are 
obtained under this model by IPF or WLS. The FARM 
estimate of is then obtained by applying the 
WLS computational algorithms to the vector of 
these estimated probabilities instead of the 
observed proporation vector p. As a result, the 
FARM analysis may be performed, when IPF is used 
in the first stage, by simple execution in sequence 
of the computer programs ECTA and GENCAT described 
previously. 

The literature describing development of log - 
linear model theory and the fitting strategies 
described here is vast, and no attempt has been 
made in this paper to adequately credit the con- 
tributors. The application of log- linear model 
theory to the MRS -CMR problem is due to Fienberg 
(1972), and a full exposition of the IPF -MLE 
approach appears in Bishop,Fienberg and Holland 
(1975). The WLS approach was adapted and describ- 
ed by Koch, El- Khorazaty and Lewis (1977), while 
FARM procedures are due to Koch, Imrey, Freeman, 

and Tolley (1977), and are applied to the MRS pro- 
blem by El- Khorazaty, Imrey, Koch and Lewis (1977), 
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